x+121=2(x^2+2)

Simple and best practice solution for x+121=2(x^2+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+121=2(x^2+2) equation:



x+121=2(x^2+2)
We move all terms to the left:
x+121-(2(x^2+2))=0
We calculate terms in parentheses: -(2(x^2+2)), so:
2(x^2+2)
We multiply parentheses
2x^2+4
Back to the equation:
-(2x^2+4)
We get rid of parentheses
-2x^2+x-4+121=0
We add all the numbers together, and all the variables
-2x^2+x+117=0
a = -2; b = 1; c = +117;
Δ = b2-4ac
Δ = 12-4·(-2)·117
Δ = 937
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{937}}{2*-2}=\frac{-1-\sqrt{937}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{937}}{2*-2}=\frac{-1+\sqrt{937}}{-4} $

See similar equations:

| 8=(3/4)(5x+20) | | 24x=39.6 | | 3+5(2x-4)=7(5x+2) | | -7(x+3)-16=24+2 | | 16+4x+125=190 | | 6k+83=3(2k+25) | | 2/4x=3/9.6 | | x^2*6=54 | | 9x-1+136=108 | | n/5+0.5=2 | | 9x+2x+19x+9x=4 | | 11x-31=49+15x | | 16x+7=26 | | 15x-(5x-5)+10=45 | | (4x-18)+(2x+6)=180 | | z-z+z+z=12 | | 6+7+x=10+2x | | -1+4x-20=6x-35 | | (6x+7)+(6x+7)=(19x-28) | | -2(n+6)=n-5/4 | | 4x+24=9x | | 3s-2s-s-8s=16 | | 8x-12=16x+5 | | 0.75+7c=112 | | (8x-23)+(8x-23)=(10x+44) | | -s-10/4=2 | | 10a-4a=18 | | p17−2p=2p+5+2p | | 5t-t-2t=8 | | 20-b=1 | | --3.8-13.4p=-460.606 | | u-7.66=5.7 |

Equations solver categories